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Abstract: A brief review of sliding model control is undertaken, with particular
emphasis upon the effects of neglected parasitic dynamics. Sliding model control
design is interpreted in the frequency domain. The inclusion of asymptotic
observers and control “hedging” is shown to reduce the effects of neglected parasitic
dynamics. An investigation into the application of observer-based sliding mode
control to the robust longitudinal control of a highly unstable is described. The
sliding mode controller is shown to exhibit stability and performance robustness
superior to that of a classical loop-shaped design when significant changes in vehicle

and actuator dynamics are employed to model airframe damage.
Keywords: sliding mode control, robust flight control, reconfigurable control,

1 INTRODUCTION

The performance demands of modern fighter aircraft has led to the introduction of vehicles
with unstable bare-airframe dyna}nics exhibiting divergent modes beyond the control
capabilities of the human pilot. The need for stability and command augmentation system
(SCASSs) in such vehicles is obvious. In addition, an emerging need for SCAS capabilities
includes stability and performance robustness in the presence of airframe damage. In the
military sector, a significant percentage of aircraft losses can be attributed to flight control
damage such as loss of hydraulics, and actuator and control effector damage [1]. In the
civilian sector, significant increases in air travel have been accompanied by a renewed
interest in safety, including tolerance of an aircraft to damage and subsystem failure. The

interest in flight safety and damage survivability has motivated research in failure/damage



tolerant flight control systems such as reconfigurable or restructurable flight control systems

e.g., [2-5].

Most, if not all, reconfigurable or restructurable flight control system design techniques
require one or more of the following: (1) failure detection/isolation, (2) control re-
allocation, (3) parameter identification and (4) system reconfiguration. In applications
involving aircraft with highly unstable modes, the time requirement for these may be
prohibitive. Thus a scheme for designing SCASs that exhibit robustness to system
failure/damage and that obviate operations (1) — (4) would be of definite interest. One such

approach is that offered by Sliding Mode Control (SMC).

In its purest incarnation, SMC offers a control system with instantaneous and complete
“adaptation” to what is termed matched uncertainty, i.e., SMC requires no failure
detection/isolation, control re-allocation, parameter identification and system
reconfiguration. The fundamental concepts describing SMC were first seen in the Russian
literature in the 1930s. It was not until the 1970s that the ideas of SMC appeared in the
Western literature when a text by Itkis [6], and a survey paper by Utkin [7] appeared. By
the early 1990s, applications of SMC became numerous. These included robot control,
motor control, and aircraft and spacecraft control. A recent text is devoted entirely to SMC

design [8]. The next section will offer a brief overview of SMC concepts.

2 SLIDING MODE CONTROL)Y
Consider the uncertain system with m inputs and »n states given by:
x(t) = A(x,t) + B(x, thu(t) + DE(x,t) 0)
where A € R"" and B € R™™ ; B is full rank, 1<m <n, and R(D) c R(B). The function
£: R, xR" > R' is unknown an represents the parameter uncertainty or nonlinearities

present in the system and is assumed to be bounded by some known functions of the state.

The matrix D € R™! is known.

The obective is to define:



(a) m switching functions, represented in vector form as o(x) with the desired

state trajectories

(b) a variable structure control
u(x, t) = psgn(o) @)
such that any state outside the switching surface is driven to the surface in finite time and
remains on this surface for all subsequent time (the so-called sliding mode). The line (or
hypersurface) that deséribes o = 0 defines the transient response of the system during the
sliding mode (the so-called sliding surface). There are four basic properties about SMC that
can be observed [9]:
(a) During the sliding mode, the trajectory dynamics are of a lower order than the
original model.
(b) While on the sliding mode, the system dynamics are solely governed by the
parameters that describe the line ¢ = 0 and are insensitive to the uncertain
function &(x,t) in Eq. 1
(c) The trajectory of the sliding mode is one that is not inherent in either of the
two control structures alone.
It is item (b) immediately above that summarizes the invariance possible with SMC.
Nothing has been said thus far about guaranteeing that the system will reach the sliding
surface and remain on the surface once it is on it. Existence of the sliding mode requires
stability of the state trajectory to the surface, or at least in some neighborhood surrounding
the surface, known as the region of attraction. In order for the sliding surface to be
attractive, the trajectories of o(t) must be directed towards it. This can be stated succinctly
as requiring

6T ()o(t) <0 3)

which is called the reachability condition



3 SLIDING MODE DESIGN
3.1 Multi-input, multi-output systems
There are many SMC design approaches in the literature. Indeed, an infinite variety of
control strategies can achieve sliding behavior. The approach to be followed herein is based
upon feedback linearization, as discussed in references {10] and [11]. Two major
assumptions are involved in this approach:
(a) the system is square, - an equal number of inputs and outputs, and
(b) the system is feedback linearizable, - no transmission zeros in the right half
plane and uncontrollable states must be stable.
If the system in question meets these criteria, it is possible to decouple the outputs with the
given inputs. This transforms a multi-input, multi-output (MIMO) design into m simple
single-input, single-output (SISO) designs, where m is the number of inputs or outputs.
Consider a non-linear, square MIMO system
x =f(x)+G(x) u
y = h(x)

where x € R", y € R”, u € R” . Assume the functions f(x), h(x) and columns g;(x)

(4)

Vi=1i,m of the matrix G(x) € ™" are smooth vector ficlds. Further, assume the system is

completely linearizable in a reasonable domain x € I'. The control system will be designed

to track a real-time reference profile, Yr(t). This system can be transformed to a normal

form [11]:

y"(l'u) Lg% hy(x)
yz‘én) _ L¢" hy(x) YE()n,
ym(rm) Lfrm hm(x)

- - _ 5

L @) L, @) - Ly @) ®
-1 -1 -1
E(x) = Lg,(L'_,? hy) ng(L}2 hy) - Lg,.,(Lft2 h2) | |E®)|=0 vxer

Lg,(LF hm) Lg, (L hm) - Ly, (Lp 'hm)
Where Lih, and Lgi(L';“’hi) Vi=1l,mare corresponding Lie derivatives [12]. The

superscripts appearing in Eq. (5) denote the “relative order” of the y; and represent the order

of the derivative of y; necessary to ensure that a term containing an element of u appears.



Next design m independent sliding surfaces (note, these have orders exactly one less than
the relative order for the corresponding state variable):

o, =" tc, e+ +c e +c e Vi=lm

(6)

Vi=l,m and Vj=0,r,-2, are

. e,
where ¢, =y, ,()-y, (1), e :%;_1_ The coefficients ¢, ;,

design parameters which can be chosen in a number of ways, e.g., to achieve the desired
eigenvalue placement of the decoupled differential equations of the output variables. In a

later section, a frequency-domain approach to the selection of the c; will be presented. It is

also common to include an integral term, cIeidt, in the sliding equations to account for

potential steady state error which can occur when utilizing a sliding mode boundary layer.

The control law that can be used is
u; = p, sgn(o;) (7
In order to prove system stability, assume the candidate Lyapunov function V, =0.5c7,

take the derivative of the sliding functions, oj, and solve for p; which provides global

attractiveness to the sliding surface in finite time.

3.2 Implementation Issues

While very attractive from a robustness standpoint, serious implementation issues must be
addressed in SMC applications. The most serious of these issues is the infinite frequency
switching that occurs when the control law of Eq. 7 is used in a control system. The
switching has been called “chatter%- by some researchers, although, strictly speaking, chatter
refers to a related (and undesirable) phenomenon in which the state trajectories chatter
along the sliding manifold. The simplest and most common approach to the elimination of
infinite frequency switching in the control law is use of the so-called boundary layer in
which the signum function of Eq. 7 is replaced by an approximation, e.g., a saturation
element. The result of using such an element is that the control becomes continuous and the
states become attracted to a small boundary layer surrounding the switching surface. Since

the ideal sliding motion is lost, the resulting system is often referred to as pseudo-sliding.

In addition, when a boundary layer is introduced, invariance is lost, although the system still



retains much of its robustness. It is this latter issue, ensuring that sufficient robustness

remains in the design, that constitutes the major challenge of the research to be described.

3.3 Unmodeled parasitic dynamics

Unmodeled parasitic dynamics refers to dynamics of the vehicle that are typically neglected
in the design procedure. These can include actuator dynamics and aeroelastic modes.
Unfortunately, SMC designs are very sensitive to the effects of unmodeled parasitic
dynamics [13].The simplest solution to the actuator problem would appear to be the
inclusion of the actuator in the model of the vehicle dynamics. However, including actuator
dynamics will increase the relative orders of the system, and, as Eq. 6 indicates, the order of
the manifolds. This means, for example, for a second order actuator, at least two
derivatives of the system output will be required. In practice, measurement noise makes
this approach very unattractive. As will be seen in a later section, using reduced order
actuator models in the design is a viable alternative to either neglecting the actuator

dynamics altogether, or incorporating the full models of these elements in the design.

A number of approaches have been offered in the literature for dealing with the effects of
parasitic dynamics. These include
(a) dynamic boundary layers in which the boundary layer thickness is continuously
adjusted to keep the controller operating in the linear region,
(b) disturbance compensation in which an SMC disturbance estimator is employed,
(¢) SMC design with a pngﬁlter in which actuator dynamics are incorporated as a
prefilter to the SMC
(d) observer-based SMC in which an asymptotic observer is placed in the feedback
path for the SMC.
The observer-based approach will be adopted in the research to be described. This decision
was based upon the relative simplicity of this technique and the fact that it is easily
amenable to a frequency domain description. As will be demonstrated, separate observers
for each feedback variable (each decoupled control loop in a MIMO system) can be
employed in the design. The selection of observer eigenvalues is governed by the following

guidelines: Large observer eigenvalues (a “fast” observer) increases the robustness of the



SMC design to variations in vehicle characteristics but also increases the susceptibility of
the design to the deleterious effects of unmodeled parasitic dynamics. Small observer
eigenvalues (a “slow” observer) decreases the robustness of the SMC design to variations in
vehicle characteristics, but also decreases the susceptibility of the design to the effects of
unmodeled parasitic dynamics. To allow large observer eigenvalues while minimizing
susceptibility to parasitic dynamics the SMC approach to be followed will utilize “model
reference hedging” [14]. In its initial incarnation, this hedging involved passing the control
signal u through a model of the vehicle that contained no parasitic dynamics and subtracting
the resulting signal from the measured vehicle output. The resulting “error” signal
represents the amount of unachieved performance due to the parasitic dynamics. This error

signal is multiplied by a gain and subtracted from the output of the reference model

Y1 (t) that the SMC system is to follow. The term “hedging” derives from the fact that the

reference model output is modified (hedged) by a signal reflecting the importance of
unmodeled parasitic dynamics. As will be seen, this hedging concept will be generalized

and, like the observer design, interpreted in the frequency domain.

3.4 The Equivalent Plant
Figure 1 shows a MIMO control system including the asymptotic observers and reference
model hedging as just outlined. Figure 2 is a modification of Fig. 1 in which the reference
model hedging is shown in equivalent form as an additional feedback loop in parallel with
the observers. In Fig. 2, Gy, represents a model of the vehicle. fn the frequency domain
approach to be described, Gy is genaralized and simplified to the following form:
- 4
(s"' +a,s" +---+a,)

G, (®)

where r; is the relative order of the output variable of interest. Likewise, the filter Gy is a

high-pass filter of the form

S
G, =—— 9
' s+b ©)

Parameter selection in Eqs. 8 and 9 is based upon a Bode diagram of the hedge transfer

function y, /y_[14]. Referring to Fig. 2, GG, is created so that the magnitude portion of

its Bode diagram exhibits the following characteristics: a +20 dB/dec slope at low



frequencies, a -20r; dB/dec slope at frequencies where the (neglected) actuator dynamics

distort the magnitude curve of ¥, /y,, (r1 = the relative order of system without parasitic

dynamics) and a -20(r;-1) dB/sec slope at high frequencies. The gain K}, is then varied until

the transfer function ¥, /y_ in Fig. 2 closely approximates that for the vehicle without

parasitic dynamics while employing as large as eigenvalues as possible in the corresponding

observer.

The system of Fig. 2 can be simplified to that of Fig. 3 in which the original vehicle,
actuator models, observers and hedging dynamics are replaced by an “equivalent” plant P,
[14]. The goal of the loop shaping procedure just described involving observers and
hedging is simply to create an effective plant P, whose Bode plot resembles that of the
vehicle without parasitic dynamics. In doing this, much of the robustness of the original

SMC design can be regained.

4. DESIGN EXAMPLE
4.1 Vehicle Model
The SMC design approach outlined in general terms in the previous sections is best
presented in detail by means of an example. The aircraft model in question describes the
longitudinal dynamics of a forward swept wing aeroelastic vehicle as developed in Ref.
[15]. The model of Ref. [15] is extended here to include thrust effects. Figure 4 shows the
general vehicle configuration. The linearized vehicle dynamics are given below for a flight
condition of steady, wings-level flight at sea level at a trim airspeed of 1000 ft/s. The state
variables in the model are defined as
x(t) = [a(t), a(t),8(1), g(t),m, (1), 0, ()M, (1), 7, (V] (10)

where

a(t) represents airspeed deviation from trim, ft/s

o(t) represents angle attack deviation from trim, rad

O(t) represents pitch attitude deviation from trim, rad
q(t) = B(t) represents pitch rate, rad/s

N1(t) = generalized coordinate for wing bending mode



N2(t) = generalized coordinate for wing torsion mode

The control variables are defined as
u(t) =[8,(1),8,(1),8, (1)) (1)

where

d¢(t) = canard deflection, rad (positive leading edge up)

&(t) = thrust change, Ibf

di(t) = flaperon deflection, rad (positive trailing edge down)
The vehicle model for two different center of gravity (cg) locations is given below, with

subscripts ‘a’, ‘¢’ and denoting aft, and center cg locations, respectively.

6.6355E-4 10.19 -322  -1624 -02674 2890E-3 5261 3.806E-5 [ 1.804 0.002 6.654 ]
-6438e-5 -2.881 —52316E-4 1010 7.627E-2 -8.182E-4 -1489 -1077E-5 05108 0  -0.4627
0 0 0 ] 0 0 0 0 0 0 0
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S266E-4 5315  -322  -1453 01405  1507E-3 2743 1984E-5 | [ 0.9407 0002 5871
-6438e-5 -2.881 -467E-4 1006 7.627E-2 ~-8.182E-4 -1489 —1.077E-5 -05108 0 -04627
0 0 0 1 0 0 0 0 0 0 0
A= 2.033e-6 79.56 1457E-5 -—08311 —1055 1762E-2 2501 1458E~3 | _| 6133 0 -19.44
0 0 0 0 0 1 0 0 7l o 0 0
-09439 31160 —6.77%E-5 66.40 -3624 -2064 -28050 3.855E-2 281.7 0 —6200
0 0 0 0 0 0 0 1 0 0 0
| 3.363-3 7509 -1564B-5 -0645 -7.6254E-2 -8.13E-4 -45240 -3.6E-2 | | 64.99 0 1338 |
B
‘ (12)

The control surface actuator dynamics and simplified engine model are given below, along

with associated position and rate limits.

Dynamics E);llt::n Rate Limits
702
Canard +15de 100 deg/s
s2+2-0.7-70-s+70° & ¢/
) 1
Engine — n/a n/a
s+1
352
Flaperons +35 de 60 deg/s
P s2+2:0.7-35-s+352 & :




As an example, the aeroelastic characteristics of the vehicle with the center cg location have

the following modal properties:

60 rad/s £=0.165
213rad/s  £=8-107

wing bending mode: ,

i

wing torsional mode: ®,

The SMC design, itsélf, will be based upon the center cg location model neglecting
structural modes. The aft cg configuration, however, will be included in a computer
simulation of the resulting vehicle and SCAS. It should be noted that this vehicle is highly
unstable. For example, with the center cg location, the longitudinal dynamics exhibit an
aperiodically divergent mode with a time to double amplitude of 0.094 s. With the aft

location the time to double amplitude of the unstable mode decreases to 0.087 s.

Measurement noise will be included in a computer simulation of the system. The
measurement noise models consist of filtered white noise, with the filter dynamics given by

20°

) 2 (13)
(s® +2(0.707)20s + 20°)

N(s)

The white noise power was adjusted to yield root-mean-square (RMS) values of the

measured variables of 0.25 deg/s for q(t) and 25 ft/s for a(t).

4.2 SMC Reference Model
The SCAS will be a pitch-ratey command and airspeed-hold system, with the pilot

controlling pitch attitude through pitch-rate. The reference model for the pitch-rate
command system is

10°
(s* +2(0.707)10s +10%)

G,(s>=qi(s>= (14)

Using a pilot modeling approach discussed in Ref. [16], these dynamics are predicted to
yield Level 1 handling qualities with no pilot-induced oscillation (PIO) tendencies. Since
the airspeed loop was not a command-response system, no airspeed reference model was

needed.

10



4.3 SMC Design Procedure

The SMC design procedure can now be presented in step-by-step fashion. As part of the

procedure below, one creates a computer simulation of the system. Here, this is

accomplished using MATLAB® and Simulink®. The steps below are directed toward the

single loop of a SISO system or any single loop of a MIMO system. In either case, only a

scalar sliding surface definition is involved.

(1) Plant Definition: A vehicle model is chosen. It may or may not include a reduced- first
order actuator model per the designer’s choice. This decision will be treated in the
following discussion. A ‘limit frequency’ is defined above which parasitic dynamics,
and unstructured uncertainties become a concern.

(2) Reference Model: A reference model is chosen. Since this study is directed toward
achieving piloted flight, a reference model which will produce a Cooper-Hérper rating
of Level 1 with no PIO tendencies should be selected.

(3) Sliding Surface Definition: The desired feedback structure is determined, e.g., a pitch
rate command system. If there are multiple actuators per pseudo-control produced by
the SMC system, a control distribution matrix must be created by any number of
methods, e.g., the pseudo-inverse approach of Ref. [14]. The sliding manifold can then
be created using the following rules:

(a) o is derived from a tracking error expression Eq. 6 where here r; is the
relative order of the system for the output being considered. Note that the
(ri-1)* derivative of the error signal is used in the definition of . Also an
integral term is alsqincluded compensating for the addition of the boundary

layer.

oc=e(t)" +c,,e(t)" +...+coe(t) +c fe(t)dt (15)

(i1) Equation 13 can be transformed to the Laplace domain and expressed as

u(s) = Eo- = Kp(s"‘l + cr'_:,_s"‘2 +..+cy + C;')e(s) (16)
£ ' S

11



In the frequency domain, the c; are chosen to produce broad K/s properties
around crossover in the loop transmission. This will always be possible to
achieve since enough derivatives are included in Eq. 15 (and powers of s in
Eq. 16) to produce the desired shape at frequencies at least as high as the
limit frequency. K, is also obtained in this step to set the crossover
frequency. Since the signum function will be replaced by a saturation
element with a % 1 limit, K, represents the largest possible control output of
the SMC. Thus, to use the entire range of the actuator suite in question, the
minimum K, must be equal to or greater than the position limit of the
actuator in the suite with the largest position limit. Also note that the
crossover frequency obtained in this will typically be very large and well
beyond the limit frequency. This is of no concern at this juncture.

(4) Sliding Behavior: The existence of the sliding mode is now be confirmed. Here the
signum function is used without a boundary layer in a Simulink® simulation of the
system. A reaching phase followed by infinite switching should be observed in
addition to o(t) = 0 for t > t; where t; is at the zero crossing of o. Note that an
observer, additional actuator orders, reference models, and hedging have not yet been
added and there are no outer loop closures. If sliding behavior (infinite switching and
o(t) = 0 for t > t5) is not observed, K, is increased until it is. ‘_

(5) Boundary Layer: Now a boundary layer is introduced via the saturation element with
unity limits. The boundary layer thickness ¢ is increased until no infinite switching ié
observed while maintaining nehr perfect tracking as seen in o(t) ~ 0. This should be
possible even with large variations in plant dynamics. Modifying p may be necessary in
this step. If € increases above 1 then increase p to maintain a constant p/e=K,.

(6) Parasitic Dynamics: The dynamics of the operational actuators are now included in the
Simulink® simulation of the system. This will almost surely cause the system to be
unstable.

(7) Observers: The design of the observers is of critical importance to the tracking
performance and robustness of the entire system. The poles of this observer should be

chosen to lie between the limit frequency and the bandwidth of the reference model. In

12



the MIMO case, an independent observer on each feedback channel can significantly
improves tracking and robustness by allowing different observer eigenvalues in each
loop.

(8) Hedging: The model reference hedging is designed in the frequency domain as
described in Section 3.4 '

(9) Reduced-order Model Actuators: If desired, if not included in step (1), actuator models
may be included in the design, but of lower order than the actual, operational actuators.
Steps (3)-(8) are repeated. As a rule of thumb, the bandwidth of the lower-order
actuators should be chosen to be approximately 60% of the operational ones. This step
may improve system robustness by including a lower-order model of parasitic dynamics
without requiring excessive differentiation of the error signal in the sliding surface

definition of Eq. 15.

4.4 Pilot Model

A control theoretic model of the human pilot was included in the Simulink® simulations to
be described. This model was compensatory in nature and assumed that the pilot was
following some commanded pitch-attitude time history, e.g., that commanded on a head-up
display unit in the cockpit. The pilot model was the Structural model as described in Ref.

[16], and included a model for a cockpit force-feel system given by

25°?

Y.. =
5 s +2(0.707)25s + 25

(17)

The Structural pilot modeling procedure includes a normalization process so that the
eliminates any dependence upon units associated with Ygs. The pilot model controls only
vehicle pitch attitude, with the airspeed-hold feature of the control system design
maintaining a desired trim airspeed. The resulting pilot model is shown in Fig. 5 and was
obtained assuming that the dynamics between the pilot’s control input and the resulting
pitch rate were determined by the reference model given in Eq. 14. The crossover

frequency for the inner pilot/vehicle control loop was selected as 1.5 rad’s.

13



4.5 Design Details — Nominal Vehicle (Center CG Location)
4.5.1 Control Distribution, Sliding Surface, Observer and Hedging Definitions

The control distribution matrix for the design was chosen as:

1 0
K=|0 1 (18)
-1 0

This means that the SMC pseudo-command for pitch rate will be distributed uniformly to
both the canard and flaperon. The negative sign arises because of the fact that pitching
moments of opposite sign arise from positive deflections of the canard and flaperon. The

distribution of Eq. 19 was chosen for simplicity.

Figure 6 shows the architecture for complete pilot/vehicle system. For the purposes of this
design, lower (first)-order actuator dynamics will be assumed for the canard and flaperon.
The actuator for the thrust, was, however, neglected in the design. as suggested in Step (j) of
Section 4.3. Figure 7 shows the Bode plot of the q/ucq transfer function for the vehicle with
assumed first-order actuators for the canard and flaperon but no aeroelastic modes. Using
the 60% bandwidth figure cited in design step 9 of Section 4.3, these actuators have the

form:

42 Flaperon (19)

(s+42) (s+21)

Canard:
b
The —40 dB/dec slope of the magnitude curve at high frequencies in Figure 7 indicates that
the relative order rg = 2. Thus, Eq. 16 becomes

uis)=Po= Kp(s +e, + E'—')e(s) (20)
€ S

Note that Eq. 20 takes the form of a simple proportional, integral, derivative (PID)
controller. As outlined design steps (3)-(8) in Section 4.3, selection of ¢y and c.; is done
through loop shaping to the produce broad K/s properties around crossover in the loop

transmission. Figure 8 shows the resulting loop transmission with a crossover frequency

14



chosen as 100 rad/s. The caveat regarding high crossover frequencies that was mentioned

in design step (3-b) is pertinent at this juncture. Equation 20 now takes the form
uis)=Po= o.oz(s +80+ Z@)e(s) Q1)
€ S

The existence of sliding behavior is now established through a Simulink® simulation of the
system. Here, the reference model is ignored and the input to the SMC system is chosen as a

sum of sinusoids

q, =.% A, sin(o.1) (22)
=1
with an RMS value of approximately 4 deg/s. It was found that K, had to be increased
from the value in Eq. 21 to K, = 0.04. Finally, to ensure that the limiting value of K,
corresponded to the largest of the position limits of the actuators serviced by ucq, (35 deg for

the flaperon actuator), K, was increased to K, = 0.6.

With the g-loop closed with the continuous control of Eq. 21, the airspeed-loop
compensation was designed. No SMC system was incorporated for the airspeed loop, since

this was a low-bandwidth system. The airspeed compensation was created as

Cq

8
G, =—==>5001bf /(ft/s) (23)
a

and resulted in a 1 rad/s crossover frequency in the airspeed loop.

A boundary layer for the q — loop‘}zvas now created by replacing the signum element with a
saturation element and replacing K, by p/e. It was found that € = 1.0 eliminated the infinite
frequency switching behavior and did not require any modification of p as discussed in
design step (5) of Section 4.3. Following design step (6), parasitic dynamics are now added

to the Simulink® simulation and instability results. This is to be expected.

Separate observers were next designed for the airspeed and pitch-rate loops. The
eigenvalues for each observer were set to the limit frequencies for each control loop as
defined in design step (1). These were defined as 30 rad/s for the q-loop and 1 rad/s for the

airspeed loop. These values corresponded to the minimum undamped natural frequenices of

15



the actuators servicing ucq and u,, the two pseudo-controls. To avoid numerical problems

with the observer design, the eigenvalues were seperated as follows:
q-loop: A=-30,-31,-32,-33; a-—loop: A=-1 (24)

Note that in Fig. 6, the reduced-order actuator models are explicitly included in the observer
loop. Hence the number of eigenvalues for the q — loop is four, the order of the vehicle
dynamics, excluding actuators and aeroelastic modes. The single eigenvalue for the
airspeed-loop observer is based upon a simplifed, low-frequency model of the airspeed to
throttle dynamics of the vehicle with the high-frequency q — loop closed via the linear
compensation of Eq. 21. Figure 9 shows the effect of various eigenvalue ranges on the

transfer function G/u,,.

Model reference hedging was next designed for the q — loop. The effects of this hedging are
shown in Fig. 10. The hedging function is denoted KyG,Gyras described in Section 3.4 and

shown in Fig. 3. Here,

_ (Ky)s
(s+20)(s +45)* (s + 80)

K,G,G; 25)

By increasing K, in Eq. 25, the magnitude of the K,GwGr Bode plot, translates vertically. In

doing so, the magnitude and phase istortion of the §/ u., Bode plot evident in Fig. 9 can be

reduced considerably compared to that for the vehicle with no parasitic dynamic, as Fig. 10

indicates. Figure 11 shows the final KyGnGr and q/u,, Bode plots. The results presented in

Fig. 11 are of central importance to the design. The figure indicates that the combination of
linear asymptotic observers and reference model hedging has created an equivalent plant
(see Fig. 3) that closely approximates that of the actual vehicle without the parasitic
dynamics associated with the actuators. This, in turn, allows the SMC system to retain
much of its robustness, and does so without higher-order error signal differentiation that

would be necessary if the full-order actuator models were included in the design.
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4.5.2 Damage Definitions

4.5.2.1 Damage Condition 1

The “damage” to the aircraft in this example will be modeled by as follows: The canard and
flaperon actuators will operate with 0.025 s time delays in their dynamics. In addition, the
actuator effectiveness (gain) will be reduced by 50%. Excluding elements describing
kinematic relationships, each element of the A and B state description of the vehicle will be

perturbed by + 20%. Using the A matrix as an example, this perturbation is implemented as
follows:

A gamage (5 1) = AG, DIT+0.2(=1)] (26)
Obviously, these changes do not accurately describe any particular damage scenario. They

were selected for ease of implementation and the maintenance of linearity for the purposes

of exposition in the frequency domain to be discussed in the following section.

4.5.2.2 Damage Condition 2

An additional damage scenario will be briefly considered that will not be included in the
analyses to follow, but will be simulated. In this damage, no delays or gain reductions are
considered in the actuators, but the flaperon will jam at 6= 5 deg. The 20% changes in the

non-kinematic elements of the vehicle A and B matrices are retained.

4.5.3 Stability Margins and Measurement Noise Amplification

Figures 12 and 13 show the loop trinsmissions that result from the complete system of Fig.
6 (without the pilot) when the loops are broken, in turn, at the input to the canard and
flaperon actuators respectively. Results for the nominal (undamaged, center cg location)
vehicle and that with damage condition 1 are shown. This stability analysis is not as
rigorous as one obtained by inserting a perturbation matrix of the form

P = diag(K,e ™" ,K,e ") 27)

before the actuators and assessing closed-loop stability when K; and ¢; are varied within
some desired region in the gain and phase parameter space. The single-loop approach was

adopted for the sake of simplicity here. As the figures, indicate, adequate stability margins
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are in evidence for the loop cut before the flaperon actuator, but the margins are small for
the damaged vehicle, with the loop cut before the canard actuator. These small margins are

attributable to the severity of the modeled damage and to the power of the canard effector.

Figure 14 shows the magnitudes of the transfer functions between the pseudo-controls ucg
and ug, and noise signals injected in parallel with the measured vehicle outputs pitch-rate
q(t) and airspeed a(t)vfor the nominal vehicle and that with damage condition 1. As the
figure indicates, noise amplification due to qpeise is significant at high frequencies for both
nominal and damaged vehicles. This amplification is attributable to the derivative term in
the PID controller of Eq. 21, which in turn derives from the inclusion of first-order actuator

models in the SMC design.

4.5.4 Equivalent Loop Transmissions

Is it useful to obtain an equivalent loop transmission for the g-loop of the SMC design for
the purposes of comparison with a classical design to be presented in the next section. First,
a closed-loop transfer function is obtained as

G=+ (28)

qC a3,
where q is the output of the reference model of Fig. 6 and the notation a — &, indicates

that the airspeed loop is considered closed in the calculation of G. Now Eq. 28 can also be
written 3
_ Lequiv (29)
T 1+L

equiv

where Lequiy is the loop transmission of an equivalent unity-feedback system that has the
same closed-loop transfer function as that of the SMC system. This Leguiv is equivalent to
the y/e transfer function from Fig. 3. Equation 29 can be rewritten as

G
L @ =— 30
“a1-G 30)

Figures 15 shows the Lqiv for the SMC nominal vehicle and that with damage condition 1.

Note, again that while positive stability margins are in evidence for both vehicles, those
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associated with the damaged vehicle have been significantly reduced. In addition, the lower
crossover frequency of the damaged system will have repercussions in terms of predicted
handling qualities, as will be seen in a later section. The reader will note the very high

crossover frequency of the Lequiy for the SMC system of approximately 100 rad/s.

4.5.5 Classical Loop-Shaping Design

To provide a meaningful assessment of the performance and robustness benefits of the SMC
design just presented, a comparison design was created. This design was obtained through
classical loop shaping procedures using fixed compensators in the forward loops of the
square feedback system controlling pitch rate and airspeed. The airspeed compensation for
the classical design was identical to that for the SMC system. The g-loop compensation is
given by

U, 0.5(s+0.1)(s+10)?
q.—-q s’(s+2.2)

3D

Figure 16 compares the Lequiv transfer functions obtained using Eq. 31 for the classical and
SMC designs for the nominal vehicle. As can be seen from the figure, the Lequiv for the
SMC system exhibits a larger crossover frequency and significantly less phase lag than the

classical design.

4.6 Simulated Pilot/Vehicle Performance A

The theta command for the pilot/vehicle system was chosen as a series of filtered pulses + 5
deg in magnitude, with each pulseMasting 5 s. To demonstrate the system robustness, the
undamaged vehicle model is chosen as that corresponding to the aft cg position, rather than
the center position used in the design. The actual second order actuators are included, as
well as the aeroelastic modes. Finally, an unmodeled 0.015 s time delay was included in the
measurements of q(t) and a(t). The “damage” described in the previous section was
introduced 20 s into a Simulink® simulation of the pilot/vehicle system. Note that no
changes in the pilot model dynamics are considered after failure. While a human pilot can
adapt to changes in vehicle characteristics, the conservative assumption made here is that
stability and performance robustness of the SCAS should be in evidence in the absence of

such changes. Simulation results for both the SMC and classical designs will be presented.
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Figure 17 shows the pitch-attitude pilot/vehicle tracking performance for the SMC design in
damage condition 1. As can be seen, there is little degradation in performance after the
damage at 20 s. Figure 18 shows the corresponding airspeed deviations from trim, while
Figs. 19 and 20 show the canard and thrust time histories, respectively. Because of the
control allocation of Eq. 18, the flaperon time history is essentially the negative of that of
the canard. Figure 21 shows the pitch-attitude pilot/vehicle tracking performance for the
classical design. Note that almost immediately after the damage, the system goes unstable.
Figure 22 shows the canard time history, with the instability readily apparent. The
comparisons between the SMC and classical designs clearly demonstrate the superiority of

the SMC design as regards stability and performance robustness.

Figure 23 shows the pitch-attitude pilot/vehicle tracking performance for the SMC design
for damage condition 2. Again, little degradation in performance occurs after the damage at
20 s. Figures 24 and 25 show the canard and flaperon time histories, respectively. While

not shown, the classical design immediately went unstable with this failure.

4.7 Handling Qualities Predictions

The fact that the vehicle damage considered in the previous sections could be described by
linear systems allows the prediction of handling qualities. Here Bandwidth/Phase Delay
was selected as the analysis metric [17]. The calculations were carried out including the
dynamics of the force-feel system, as suggested in Ref. [17]. Figure 26 shows the
boundaries of this metric and thg Bandwidth/Phase Delay points for the configurations
examined in the previous section. All points were calculated at the off-design, aft-cg
position. No points were plotted for the classical design in either damage conditions, since
the simulated pilot/vehicle system was unstable. As can be seen, the damage conditions
significantly degrade handling qualities of the vehicle, even with the SMC design. This is
particular true for damage condition 1. This latter result is, of course, attributable to the
severity of the modeled damage, in particular the total. 40 ms additional time delay that

occurs in the control loop.
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5

EXTENSION TO MIMO SYSTEMS

As Ref. [14] demonstrates, extension of the SMC design technique presented here to MIMO

systems is straightforward. Assuming a square, feedback linearizable control system, each

loop is treated as a SISO system. The only added complexity occurs through the possible

necessity of cross-hedging, i.e., feeding hedged signals between different control loops.

However, the technique of determining the form and the gain of the hedging is the same as

for SISO systems.

6

CONCLUSIONS

Based upon the research that has been described, the following conclusions can be drawn:

(M

)

3)

A practical flight control system design methodology is feasible based upon sliding
mode techniques. The methodology can be described by a step-by-step design
procedure.

The combination of sliding surface boundary layers, asymptotic observers and reference
model “hedging” minimizes the adverse effects of neglected parasitic dynamics upon
the control scheme.

In an example focusing upon the longitudinal control of a model of a highly unstable
aircraft, the sliding mode design exhibited superior stability and performance
robustness as compared to a classical, loop-shaped design. This robustness is
attributable to the significantly higher equivalent crossover frequency that can be

obtained with the sliding mode approach.

(4) Using reduced-order models of actuator dynamics is a feasible alternative to neglecting
them entirely in the design p}Bcedure, albeit at the price of higher measurement noise
amplification. ’

(5) Under the assumption of a square, feedback linearizable control architecture, MIMO
control formulations are possible with little added complexity compared to SISO
formulations.
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